Convex hulls of random walks, hyperplane arrangements, and Weyl chambers

نویسنده

  • Dmitry Zaporozhets
چکیده

We give an explicit formula for the probability that the convex hull of an n-step random walk in R does not contain the origin, under the assumption that the distribution of increments of the walk is centrally symmetric and puts no mass on affine hyperplanes. This extends the formula by Sparre Andersen (Skand Aktuarietidskr 32:27–36, 1949) for the probability that such random walk in dimension one stays positive. Our result is distribution-free, that is, the probability does not depend on the distribution of increments. This probabilistic problem is shown to be equivalent to either of the two geometric ones: (1) Find the number of Weyl chambers of type Bn intersected by a generic linear subspace of R of codimension d; (2) Find the conic intrinsic volumes of a Weyl chamber of type Bn. We solve the first geometric problem using the theory of hyperplane arrangements. A by-product of our method is a new simple proof of the general formula by Klivans and Swartz (Discrete Comput Geom 46(3):417–426, 2011) relating the coefficients of the characteristic polynomial of a linear hyperplane arrangement to the conic intrinsic volumes of the chambers constituting its complement. We obtain analogous distribution-free results for Weyl chambers of type An−1 (yielding the probability of absorption of the origin by the convex hull of a generic random walk bridge), type Dn, and direct products of Weyl chambers (yielding the absorption probability for the joint convex hull of several random walks or bridges). The simplest case of products of the form B1 × · · · × B1 recovers the Wendel formula (Math Scand 11:109–111, 1962) for the probability that the convex hull of an i.i.d. multidimensional sample chosen from a centrally symmetric distribution does not contain the origin. We also give an asymptotic analysis of the obtained absorption probabilities as n → ∞, in both cases of fixed and increasing dimension d. This paper was written when V.V. was affiliated to Imperial College London, where his work was supported by People Programme (Marie Curie Actions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA Grant Agreement No. [628803]. V.V. and D.Z. were supported in part by the RFBI Grant 16-01-00367 and by the Program of Fundamental Researches of Russian Academy of Sciences “Modern Problems of Fundamental Mathematics”. Z. KABLUCHKO ET AL. GAFA

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eigenfunctions for Random Walks on Hyperplane Arrangements by John Pike A Dissertation Presented to the FACULTY OF THE USC GRADUATE SCHOOL UNIVERSITY OF SOUTHERN CALIFORNIA

A large class of seemingly disparate Markov chains can be modeled as random walks on the chambers of hyperplane arrangements. Examples include models from computer science, statistical mechanics, military campaigns, and card shuffling, as well as many natural random walks on finite reflection groups. A remarkable feature of these chains is that the general theory is fairly complete. For instanc...

متن کامل

1 M ay 2 00 8 RANDOM WALKS , ARRANGEMENTS , CELL COMPLEXES , GREEDOIDS , AND SELF - ORGANIZING LIBRARIES

The starting point is the known fact that some much-studied random walks on permutations, such as the Tsetlin library, arise from walks on real hyperplane arrangements. This paper explores similar walks on complex hyperplane arrangements. This is achieved by involving certain cell complexes naturally associated with the arrangement. In a particular case this leads to walks on libraries with sev...

متن کامل

Random Walks, Arrangements, Cell Complexes, Greedoids, and Self-organizing Libraries

The starting point is the known fact that some much-studied random walks on permutations, such as the Tsetlin library, arise from walks on real hyperplane arrangements. This paper explores similar walks on complex hyperplane arrangements. This is achieved by involving certain cell complexes naturally associated with the arrangement. In a particular case this leads to walks on libraries with sev...

متن کامل

Random Walks Conditioned to Stay in Weyl Chambers of Type C and D

We construct the conditional versions of a multidimensional random walk given that it does not leave the Weyl chambers of type C and of type D, respectively, in terms of a Doob h-transform. Furthermore, we prove functional limit theorems for the rescaled random walks. This is an extension of recent work by Eichelsbacher and König who studied the analogous conditioning for the Weyl chamber of ty...

متن کامل

Random Walk and Hyperplane Arrangements

Let C be the set of chambers of a real hyperplane arrangement. We study a random walk on C introduced by Bidigare, Hanlon, and Rockmore. This includes various shuuing schemes used in computer science, biology, and card games. It also includes random walks on zonotopes and zonotopal tilings. We nd the stationary distributions of these Markov chains, give good bounds on the rate of convergence to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017